
NEATPy
Release 1.0.0

Michael Gundersen

Nov 18, 2020

API DOCUMENTATION

1 API 3
1.1 Preconnection . 3
1.2 Connection . 4
1.3 Transport Properties . 7
1.4 Selection Properties . 8
1.5 Connection Properties . 9
1.6 Message Properties . 11
1.7 Endpoints . 12
1.8 Framer . 13

2 Client-server example 15
2.1 Server . 15
2.2 Client . 16

Python Module Index 19

Index 21

i

ii

NEATPy, Release 1.0.0

This is the documentation for NEATPy: a transport system conforming to the specification of a transport
system specified by the TAPS WG. While written in Python, it utilizes the NEAT codebase with the help of
language bindings created by SWIG. In this way this transport system is logically divided in a front-end and
back-end; the Python front-end presents a standards conforming API to the end user, while under the hood,
it uses NEAT to handle all protocol machinery.

Missing implementation details:

The implementation of NEATPy is mostly based on version 4 and 5 of the interface draft by the TAPS. It
implements all major objects, actions and events. However some implementations details are left out. The
reason for this, is that successful implementation of these would require changes to NEAT, which was outside
the scope of the thesis:

• Selection Properties:

Interface Instance or Type
Provisioning Domain Instance or Type
Use Temporary Local Address

• Connection Properties:

Retransmission Threshold Before Excessive Retransmission Notification
Connection Group Transmission Scheduler

• Events:

Soft Errors
Excessive retransmissions

• Security Parameters:

NEATPy provides secure connections, with TLS/TCP | DTLS/UDP | DTLS/SCTP, but further cus-
tomization, as specified in the interface draft is not implemented, due to constraints in NEAT. For the
transport system to be fully security-conformant, further implementation of security within NEAT is
needed.

• Rendezvous Action:

Currently, the TAPS description is not very clear, and the full specification for the action is yet to be
finalized.

Deviations:

• Preconnection.start():

The method is added to fulfill the methods Preconnection.initiate() and Preconnection.listen(),
which respectively returns a Connection and Listener. The reason for this addition to NEATPy’s interface
is to facilitate the start of the event loop running in the within NEAT. This function starting the event
loop does not return. To be able to return Connection and Listener objects this method is needed to
start the transport system and with it the event loop.

API DOCUMENTATION 1

https://github.com/ietf-tapswg/api-drafts
https://www.neat-project.org/
http://www.swig.org/

NEATPy, Release 1.0.0

2 API DOCUMENTATION

CHAPTER

ONE

API

1.1 Preconnection

class Preconnection(local_endpoint=None, remote_endpoint=None, trans-
port_properties=None, security_needed=False, unful-
filled_handler=None)

A Preconnection represents a set of properties and constraints on the selection and configu-
ration of paths and protocols to establish a Connection with a remote Endpoint.

Parameters

• local_endpoint (Optional[LocalEndpoint]) – Optional local endpoint to be
used with the Preconnection

• remote_endpoint (Optional[RemoteEndpoint]) – Optional remote endpoint
to be used with the Preconnection

• transport_properties (Optional[TransportProperties]) – A transport
property object with desired Selection Properties.

• security_needed (bool) – Indicated whether or not a secure connection is
needed.

• unfulfilled_handler (Optional[Callable[[], None]]) – A function handling
an unfulfilled error

add_framer(framer)
Adds a framer to the Preconnection to run on top of transport protocols. Multiple
Framers may be added. If multiple Framers are added, the last one added runs first
when framing outbound messages, and last when parsing inbound data.

Parameters framer – The framer to be added. Must inherit from the framer
class and implement its abstract functions.

Return type None

initiate(timeout=None)
Initiate (Active open) is the Action of establishing a Connection to a Remote Endpoint
presumed to be listening for incoming Connection requests. Active open is used by
clients in client-server interactions. Note that start() must be called on the Preconnec-
tion.

Parameters timeout – The timeout parameter specifies how long to wait before
aborting Active open.

Return type Connection

initiate_with_send(message_data, sent_handler, message_context=None, time-
out=None)

For application-layer protocols where the Connection initiator also sends the first mes-

3

NEATPy, Release 1.0.0

sage, the InitiateWithSend() action combines Connection initiation with a first Message
sent. Returns a Connection object in the establishing state.

Parameters
• message_data (bytearray) – The message to be sent
• sent_handler (Callable[[Connection, SendErrorReason], None]) – A func-

tion / completion handler, handling both a successful completion and er-
rors.

• message_context (Optional[MessageContext]) – Optional, used to indicate
the message is idempotent, so it possibly can be used with 0-RTT establish-
ment, if supported by the transport stack and system.

• timeout (Optional[int]) – The timeout parameter specifies how long to
wait before aborting Active open.

Return type Connection

listen()
Listen (Passive open) is the Action of waiting for Connections from remote Endpoints.
Before listening the transport system will resolve transport properties for candidate
protocol stacks. A local endpoint must be passed to the Preconnection prior to listen.

Return type Listener
Returns A listener object.

start()
Starts the transport systems. Must be called after initiate / listen.

Return type None
Returns This function does not return.

1.2 Connection

class ConnectionState(value)
An enumeration of the different states for a connection.

CLOSED = 4

CLOSING = 3

ESTABLISHED = 2

ESTABLISHING = 1

class MessageDataObject(data, length)
The messageData object provides access to the bytes that were received for a Message, along with the
length of the byte array. It is passed to applications during the receive event, signaling a completion of
a receive() call.

data: bytearray
The raw bytes of the message

length: int
The message length

class Connection
A Connection represents a transport Protocol Stack on which data can be sent to and/or received
from a remote Endpoint (i.e., depending on the kind of transport, connections can be bi-directional or
unidirectional).

A Connection is created from a preconnection with active or passive open, or cloning, i.e it cannot be
instantiated directly.

4 Chapter 1. API

NEATPy, Release 1.0.0

HANDLE_STATE_CLOSED: Callable[[Connection], None]
Handler for when the connection transitions to closed state

HANDLE_STATE_CONNECTION_ERROR: Callable[[Connection], None]
Handler for when the connection gets experiences a connection error

HANDLE_STATE_READY: Callable[[Connection], None]
Handler for when the connection transitions to ready state

abort()
Abort terminates a Connection without delivering remaining data.

Return type None

batch(batch_block)
Used to send multiple messages without the transport system dispatching messages further down
the stack. Used to minimize overhead, and as a mechanism for the application to indicate that
messages could be coalesced when possible.

Parameters batch_block (Callable[[], None]) – A function / block of code which calls
send multiple times

Return type None

clone(clone_error_handler)
Calling Clone on a Connection yields a group of two Connections: the parent Connection on which
Clone was called, and the resulting cloned Connection. These connections are “entangled” with
each other, and become part of a Connection Group. Calling Clone on any of these two Connec-
tions adds a third Connection to the Connection Group, and so on. Connections in a Connection
Group generally share connection_properties. However, there are exceptions, such as the prior-
ity property, which obviously will not trigger a change for all connections in the connection group.
As with all other properties, priority is copied to the new Connection when calling Clone().

Parameters clone_error_handler (Callable[[Connection], None]) – A function to han-
dle the event which fires when the cloning operation fails. The connection which
clone was called on is sent with the handler.

Return type None

close()
Close terminates a Connection after satisfying all the requirements that were specified regarding
the delivery of Messages that the application has already given to the transport system. For
example, if reliable delivery was requested for a Message handed over before calling Close, the
transport system will ensure that this Message is indeed delivered. If the Remote Endpoint still
has data to send, it cannot be received after this call.

Return type None

get_properties()
Returns a dictionary consisting of the connections properties, which include the following:

• connection_state - key 'state'

• A boolean which holds the value for whether the connection can be used for sending - key
'send'

• A boolean which holds the value for whether the connection can be used for receiving - key
'receive'

• A transport_properties object, which will differ with the connection’s state - key 'props'

1.2. Connection 5

NEATPy, Release 1.0.0

– A connection in an establishing phase will hold transport properties that the application
specified with the preconnection.

– A connection in either an established, closing or closed state will hold the
selection_properties and connection_properties of the actual protocols that were
selected and instantiated.

An example showing an application checking if the connection can be used for sending:

returned_props_dict = connection.get_properties()
can_be_used_for_sending = returned_props_dict['send']
if can_be_used_for_sending:

...

Return type None

receive(handler, min_incomplete_length=None, max_length=inf)
As with sending, data is received in terms of Messages. Receiving is an asynchronous operation,
in which each call to Receive enqueues a request to receive new data from the connection. Once
data has been received, or an error is encountered, an event will be delivered to complete the
Receive request.

Parameters

• handler (Callable[[Connection, MessageDataObject, MessageContext, bool,
bool], None]) – The function to handle the event delivered during completion,
which includes both potential errors and successfully received data.

• min_incomplete_length (Optional[int]) – The default None value indicates that
only complete messages should be delivered. Setting it to anything other than this
will trigger a receive event only when at least that many bytes are available.

• max_length (int) – Indicates the maximum size of a message in bytes the applica-
tion is prepared to receive. Incoming messages larger than this will be delivered in
received partial events. To determine whether the received event is a partial event
the application is able to check whether the variable is_end_of_message holds the
boolean value False, which indicates a partial event, while a None value indicates
a complete message being delivered.

Return type None

send(message_data, sent_handler=None, message_context=None, end_of_message=True)
Data is sent as Messages, which allow the application to communicate the boundaries of the
data being transferred. By default, Send enqueues a complete Message, and takes optional per-
message_properties. Applications are able to handle events with the :param sent_handler. This
handles completion in form of an either an error or a successfully sent message.

Parameters

• message_data (bytearray) – The data to send.

• sent_handler (Optional[Callable[[Connection, SendErrorReason], None]]) – A
function that is called after completion / error.

• message_context (Optional[MessageContext]) – Additional message_properties
can be sent by adding them to a Message Context object Optinoal.

• end_of_message (bool) – When set to false indicates a partial send. All data sent
with the same MessageContext object will be treated as belonging to the same
Message, and will constitute an in-order series until the endOfMessage is marked.

6 Chapter 1. API

NEATPy, Release 1.0.0

Return type None

set_property(connection_property, value)
The application can set and query Connection Properties on a per-Connection basis.
Connection Properties that are not read-only can be set during pre-establishment (see
connection_properties) as well as on connections directly using the SetProperty action:

Parameters

• connection_property (ConnectionProperties) – The property to assign a value.

• value – The value to assign the property.

Return type None

1.3 Transport Properties

class TransportProperties(property_profile=None)
Transport properties is the collection of message_properties, selection_properties and
connection_properties.

Parameters property_profile (Optional[TransportPropertyProfiles]) – Transport prop-
erty profile to use

add(prop, value)
Add a property to the transport property object.

Parameters

• prop (Union[SelectionProperties, MessageProperties, ConnectionProperties])
– Property to add

• value – Value for given property

Return type None

avoid(prop)
Set the preference level to avoid for the passed selection property.

Parameters prop (SelectionProperties) – Selection property to set avoid as preference
level for.

Return type None

default(prop)
Set the default preference level for the given selection property.

Parameters prop (SelectionProperties) – Selection property to reset to default prefer-
ence level for.

ignore(prop)
Set the preference level to ignore for the passed selection property.

Parameters prop (SelectionProperties) – Selection property to set ignore as prefer-
ence level for.

Return type None

prefer(prop)
Set the preference level to prefer for the passed selection property.

Parameters prop (SelectionProperties) – Selection property to set prefer as prefer-
ence level for.

1.3. Transport Properties 7

NEATPy, Release 1.0.0

Return type None

prohibit(prop)
Set the preference level to prohibit for the passed selection property.

Parameters prop (SelectionProperties) – Selection property to set prohibit as prefer-
ence level for.

Return type None

require(prop)
Set the preference level to require for the passed selection property.

Parameters prop (SelectionProperties) – Selection property to set require as prefer-
ence level for.

Return type None

class TransportPropertyProfiles(value)
Transport property profiles are used as a mechanism to pre-configure transport_properties objects,
with frequently used sets of properties.

RELIABLE_INORDER_STREAM = 1
This profile provides a reliable, in-order transport service with congestion control. An example of
a protocol that provides this service is TCP.

RELIABLE_MESSAGE = 2
This profile provides message-preserving, reliable, in-order transport service with congestion con-
trol. An example of a protocol that provides this service is SCTP.

UNRELIABLE_DATAGRAM = 3
This profile provides an unreliable datagram transport service. An example of a protocol that
provides this service is UDP.

1.4 Selection Properties

class PreferenceLevel(value)
An enumeration. Used when specifying a preference for selection_properties.

E.g an application specifying that a reliable transport is required would do this the following way:

transport_properties.add(SelectionProperties.RELIABILITY, PreferenceLevel.REQUIRE)

AVOID = -1

IGNORE = 0

PREFER = 1

PROHIBIT = -2

REQUIRE = 2

class SelectionProperties(value)
An enumeration. Selection properties are used for application to specify applications requirements
for transport and used for path and protocol stack selections. Selection properties are added to a
transport_properties object.

CONGESTION_CONTROL = 'congestion-control'
Default preference_level.REQUIRE,

8 Chapter 1. API

NEATPy, Release 1.0.0

DIRECTION = 'direction'
Default communication_directions

INTERFACE = 'interface'
Default preference_level

LOCAL_ADDRESS_PREFERENCE = 'local-address-preference'
Default preference_level

MULTIPATH = 'multipath'
Default preference_level.PREFER

MULTISTREAMING = 'multistreaming'
Default preference_level.PREFER,

PER_MSG_CHECKSUM_LEN_RECV = 'per-msg-checksum-len-recv'
Default preference_level.IGNORE,

PER_MSG_CHECKSUM_LEN_SEND = 'per-msg-checksum-len-send'
Default preference_level.IGNORE,

PER_MSG_RELIABILITY = 'per-msg-reliability'
Default preference_level.IGNORE,

PRESERVE_MSG_BOUNDARIES = 'preserve-msg-boundaries'
Default preference_level.PREFER,

PRESERVE_ORDER = 'preserve-order'
Default preference_level.REQUIRE,

PVD = 'pvd'
Default preference_level

RELIABILITY = 'reliability'
Default preference_level.REQUIRE,

RETRANSMIT_NOTIFY = 'retransmit-notify'
Default preference_level.IGNORE

SOFT_ERROR_NOTIFY = 'soft-error-notify'
Default preference_level.IGNORE

ZERO_RTT_MSG = 'zero-rtt-msg'
Default preference_level.IGNORE,

1.5 Connection Properties

class CapacityProfiles(value)
By specifying a Capacity Profile, an application is able to signal what kind of network treatment it
desires. Under the hood the transport system will map each profile to different DSCP values for the
given Connection.

CAPACITY_SEEKING = 10
Sending and receiving at the maximum rate allowed by the Connection’s congestion controller.

CONSTANT_RATE_STREAMING = 28
Sending and receiving at a constant rate is desired. Minimal delay is wanted.

DEFAULT = 0
No explicit information for expected capacity profile is given.

1.5. Connection Properties 9

NEATPy, Release 1.0.0

LOW_LATENCY_INTERACTIVE = 36
An interactive Connection. Loss is preferred over latency.

LOW_LATENCY_NON_INTERACTIVE = 18
Loss is preferred to latency, but the Connection is non-interactive.

SCAVENGER = 1
A non-interactive Connection. The data is sent without any urgency for either sending or receiv-
ing.

class ConnectionProperties(value)
Connection Properties represent the configuration and state of the selected Protocol Stack(s) backing
a Connection. The application can set and query Connection Properties on a per-Connection basis.
Connection Properties that are not read-only can be set prior to a call to either initiate() or listen().

BOUNDS_ON_SEND_OR_RECEIVE_RATE = 'max-send-rate / max-recv-rate'
Default value is (-1, -1)

CAPACITY_PROFILE = 'conn-capacity-profile'
Default value is CapacityProfiles

CONNECTION_GROUP_TRANSMISSION_SCHEDULER = 'conn-scheduler'
Default value is “Weighted fair queueing”

MAXIMUM_MESSAGE_SIZE_BEFORE_FRAGMENTATION_OR_SEGMENTATION = 'singular-transmission-msg-max-len'
Default value is -1

MAXIMUM_MESSAGE_SIZE_CONCURRENT_WITH_CONNECTION_ESTABLISHMENT = 'zero-rtt-msg-max-len'
Default value is -1

MAXIMUM_MESSAGE_SIZE_ON_RECEIVE = 'recv-msg-max-len'
Default value is -1

MAXIMUM_MESSAGE_SIZE_ON_SEND = 'send-msg-max-len'
Default value is -1

PRIORITY = 'conn-prio'
Default value is 100

REQUIRED_MINIMUM_CORRUPTION_PROTECTION_COVERAGE_FOR_RECEIVING = 'recv-checksum-len'
Default value is -1

RETRANSMISSION_THRESHOLD_BEFORE_EXCESSIVE_RETRANSMISSION_NOTIFICATION = 'retransmit-notify-threshold'
Default value is -1

TIMEOUT_FOR_ABORTING_CONNECTION = 'conn-timeout'
Default value is -1

USER_TIMEOUT_TCP = 'tcp-uto'
An enumeration of three values, see TCPUserTimeout.

class TCPUserTimeout(value)
These properties specify configurations for the User Timeout Option (UTO), in case TCP becomes the
chosen transport protocol.

To set a property of TCP UTO, pass a dictionary with one or more properties:

tcp_uto_dict = {TCPUserTimeout.ADVERTISED_USER_TIMEOUT: 150}
transport_properties_object.add(ConnectionProperties.USER_TIMEOUT_TCP, tcp_uto_dict)

ADVERTISED_USER_TIMEOUT = 'tcp.user-timeout-value'
This time value is advertised via the TCP User Timeout Option (UTO) - Default 300 seconds.

10 Chapter 1. API

NEATPy, Release 1.0.0

CHANGEABLE = 'tcp.user-timeout-recv'
This property controls whether the Timeout for aborting Connection may be changed based on a
UTO option received from the remote peer - Default True

USER_TIMEOUT_ENABLED = 'tcp.user-timeout'
This property controls whether the UTO option is enabled for a connection - Default False`

1.6 Message Properties

class MessageProperties(value)
Message Properties are used by the application to annotate the Messages they send with
extra information to control how data is scheduled and processed by the transport protocols
in the connection. Message Properties are sent by adding them to a message_context, and
pass said context to the send() call.

CORRUPTION_PROTECTION_LENGTH = 'msg-checksum-len'
Default value is -1

EARLY_DATA = 'early-data'
Read only property

ECN = 'ecn'
Read only property

FINAL = 'final'
Default value is False

IDEMPOTENT = 'idempotent'
Default value is False

LIFETIME = 'msg-lifetime'
Default value is math.inf

MESSAGE_CAPACITY_PROFILE_OVERRIDE = 'msg-capacity-profile'
Default value is CapacityProfiles.DEFAULT

ORDERED = 'msg-ordered'
Default value is True

PRIORITY = 'msg-prio'
Default value is 100

RECEIVING_FINAL_MESSAGE = 'receiving-final-messages'
Read only property

RELIABLE_DATA_TRANSFER = 'msg-reliable'
Default value is True

SINGULAR_TRANSMISSION = 'singular-transmission'
Default value is False

1.6. Message Properties 11

NEATPy, Release 1.0.0

1.7 Endpoints

class LocalEndpoint
This class holds information about a local endpoint. It could be passed when initiating a
preconnection. Furthermore it is required when trying to establish a connection with a remote end-
point with listen().

with_address(address)
This function sets the address desired to use with the local endpoint.

Parameters address (str) – The address to set.

Return type None

with_interface(interface)
This function sets the interface desired to with the local endpoint.

Parameters interface (str) – The endpoint to set.

Return type None

with_port(port_number)
This function sets the port desired to use with the local endpoint.

Parameters port_number (int) – The port to set.

Return type None

class RemoteEndpoint
This class holds information about a remote endpoint. It could be passed when initiating a
preconnection. Furthermore it is required when trying to establish a connection with a remote end-
point with initiate().

with_address(address)
This function sets the address desired to use with the local endpoint.

Parameters address (str) – The address to set.

Return type None

with_hostname(hostname)
This function sets the hostname for the remote endpoint.

Parameters hostname (str) – The hostname to set.

Return type None

with_interface(interface)
This function sets the interface desired to with the local endpoint.

Parameters interface (str) – The endpoint to set.

Return type None

with_port(port_number)
This function sets the port desired to use with the local endpoint.

Parameters port_number (int) – The port to set.

Return type None

12 Chapter 1. API

NEATPy, Release 1.0.0

1.8 Framer

class Framer

abstract handle_received_data(connection)
Upon receiving this event, the framer implementation can inspect the inbound data. The data
is parsed from a particular cursor representing the unprocessed data. The application requests a
specific amount of data it needs to have available in order to parse. If the data is not available,
the parse fails.

Parameters connection – The connection the framer is registered with.

abstract new_sent_message(connection, message_data, message_context, sent_handler,
is_end_of_message)

Upon receiving this event, a framer implementation is responsible for performing any necessary
transformations and sending the resulting data back to the Message Framer, which will in turn
send it to the next protocol.

:param connection:The connection the framer is registered with. :type message_data:
bytearray :param message_data: The data to send. :param message_context: Additional
message_properties can be sent by adding them to a Message Context object Optinoal. :type
sent_handler: Callable[[Connection, SendErrorReason], None] :param sent_handler: A function
that is called after completion / error. :param end_of_message: When set to false indicates a
partial send.

abstract start(connection)
When a Message Framer generates a Start event, the framer implementation has the opportunity
to start writing some data prior to the Connection delivering its Ready event. This allows the
implementation to communicate control data to the remote endpoint that can be used to parse
Messages.

Parameters connection – The connection that the framer is registered with.

class ExampleFramer
To provide an example this class implements the abstract interface in framer class. It’s a simple TLV
framer that frame TCP messages by prepending message size. This is then parsed by the same framer
at the destination.

To use the framer, simply create an instance, and pass it to a preconnection like so:

new_preconnection = Preconnection(remote_endpoint=ep)
preconnection.add_framer(framer.ExampleFramer())

1.8. Framer 13

NEATPy, Release 1.0.0

14 Chapter 1. API

CHAPTER

TWO

CLIENT-SERVER EXAMPLE

Let us create a simple client and server with NEATPy!

Our server is going to reply “Hello from server” to all incoming messages, while our client will simply send a
message, wait for a reply, then terminate the connection.

Let us start with the server!

2.1 Server

First we need to create a local_endpoint and specify which port we want to listen to:

local_specifier = LocalEndpoint()
local_specifier.with_port(5000)

We want a transport that is reliable and stream-oriented. To specify this we need to create a
transport_properties object and set a preference_level for a couple of selection_properties:

transport_properties = TransportProperties()
Selection properties can be set with the add call...
transport_properties.add(SelectionProperties.RELIABILITY, PreferenceLevel.REQUIRE)
Or one of the convenient functions:
transport_properties.prohibit(SelectionProperties.PRESERVE_MSG_BOUNDARIES)

The next step is to create a preconnection, passing our local endpoint and transport properties as arguments.
Next, we call listen()

new_preconnection = Preconnection(local_endpoint=local_specifier, transport_properties=tp)
new_listener: Listener = new_preconnection.listen()

To reply Hello from server to new incoming messages, and then terminate the connection we need to register
two event handlers:

• One event handler that is registered for the listener, called when a new connection is established. This
is registered with the member HANDLE_CONNECTION_RECEIVED of the listener class.

• We pass our second event handler with the send call for our reply, being fired with the ‘sent’ event.

The signatures of these event is listed in the documentation. The event handlers could be either full fledged
functions or anonymous functions (in essence all objects that are callable), let us create one of each for
demonstration:

15

NEATPy, Release 1.0.0

def simple_connection_received_handler(connection, message, context, is_end, error):
anon_func = lambda connection: connection.close()
connection.send(b"Hello from server", anon_func)

The last step will be to register the event handler and call preconnection.Preconnection.start().

new_listener.HANDLE_CONNECTION_RECEIVED = new_connection_received
new_preconnection.start()

Note: Calling start on the Preconnection starts the inner event loop of the transport system and does not
return. Further interaction is achieved through the various events, e.g. the event signaling a Connection is
received, manifested in the HANDLE_CONNECTION_RECEIVED member of the listener class.

That is it! Assuming we are running our program from the command line and using a main function, the
typed out server looks like the following:

import neatpy

def simple_connection_received_handler(connection, message, context, is_end, error):
anon_func = lambda connection: connection.close()
connection.send(b"Hello from server", anon_func)

def main():
local_specifier = LocalEndpoint()
local_specifier.with_port(5000)

transport_properties = TransportProperties()
transport_properties.add(SelectionProperties.RELIABILITY, PreferenceLevel.REQUIRE)
transport_properties.prohibit(SelectionProperties.PRESERVE_MSG_BOUNDARIES)

new_preconnection = Preconnection(local_endpoint=local_specifier, transport_properties=tp)
new_listener: Listener = new_preconnection.listen()

new_listener.HANDLE_CONNECTION_RECEIVED = new_connection_received
new_preconnection.start()

if __name__ == "__main__":
main()

2.2 Client

To establish a connection to our server, we will first need to create a Remote Endpoint and specify the remote
port and address:

remote_specifier = RemoteEndpoint()
remote_specifier.with_address("127.0.0.1")
remote_specifier.with_port(5000)

Following we create a transport_properties object, but this time we will use one of the
transport_profiles. These functions as a convenience objects, pre-configured with frequently used sets
of properties, and are passed on when initializing a transport_properties object:

16 Chapter 2. Client-server example

NEATPy, Release 1.0.0

transport_properties = TransportProperties(TransportPropertyProfiles.RELIABLE_INORDER_STREAM)

Next, just like with the server, we create a preconnection and pass out Remote Endpoint and Transport
Properties:

new_preconnection = Preconnection(remote_endpoint=remote_specifier, transport_properties=transport_
→˓properties)
new_connection = new_preconnection.initiate()

The last thing we need to do is to register our event handler for when the initiated connection is successfully
established, and then start the transport system with

new_connection.HANDLE_STATE_READY = ready_handler
new_preconnection.start()

With our client we have two event handlers. One for handling when the Connection is successfully estab-
lished while the last one is passed when calling receive(), handling a receive event:

def receive_handler(connection, message, message_context, is_end_of_message, error):
print(f"Got message {len(message.data)}: {message.data.decode()}")
connection.stop()

def ready_handler(connection: Connection):
connection.send(b"Hello server", None)
connection.receive(receive_handler)

Our client in full looks like the following:

def receive_handler(connection, message, message_context, is_end_of_message, error):
print(f"Got message {len(message.data)}: {message.data.decode()}")
connection.stop()

def ready_handler(connection: Connection):
connection.send(b"Hello server", None)
connection.receive(receive_handler)

def main():
remote_specifier = RemoteEndpoint()
remote_specifier.with_address("127.0.0.1")
remote_specifier.with_port(5000)

transport_properties = TransportProperties(TransportPropertyProfiles.RELIABLE_INORDER_STREAM)

new_preconnection = Preconnection(remote_endpoint=remote_specifier, transport_properties=transport_
→˓properties)

new_connection = new_preconnection.initiate()
new_connection.HANDLE_STATE_READY = ready_handler
new_preconnection.start()

if __name__ == "__main__":
main()

2.2. Client 17

NEATPy, Release 1.0.0

18 Chapter 2. Client-server example

PYTHONMODULE INDEX

c
connection, 4
connection_properties, 9

e
endpoint, 12

f
framer, 13

m
message_properties, 11

p
preconnection, 3

s
selection_properties, 8

t
transport_properties, 7

19

NEATPy, Release 1.0.0

20 Python Module Index

INDEX

A
abort() (Connection method), 5
add() (TransportProperties method), 7
add_framer() (Preconnection method), 3
ADVERTISED_USER_TIMEOUT (TCPUserTimeout attribute), 10
AVOID (PreferenceLevel attribute), 8
avoid() (TransportProperties method), 7

B
batch() (Connection method), 5
BOUNDS_ON_SEND_OR_RECEIVE_RATE (ConnectionProperties

attribute), 10

C
CAPACITY_PROFILE (ConnectionProperties attribute), 10
CAPACITY_SEEKING (CapacityProfiles attribute), 9
CapacityProfiles (class in connection_properties), 9
CHANGEABLE (TCPUserTimeout attribute), 10
clone() (Connection method), 5
close() (Connection method), 5
CLOSED (ConnectionState attribute), 4
CLOSING (ConnectionState attribute), 4
CONGESTION_CONTROL (SelectionProperties attribute), 8
connection

module, 4
Connection (class in connection), 4
CONNECTION_GROUP_TRANSMISSION_SCHEDULER

(ConnectionProperties attribute), 10
connection_properties

module, 9
ConnectionProperties (class in connection_properties), 10
ConnectionState (class in connection), 4
CONSTANT_RATE_STREAMING (CapacityProfiles attribute), 9
CORRUPTION_PROTECTION_LENGTH (MessageProperties attribute), 11

D
data (MessageDataObject attribute), 4
DEFAULT (CapacityProfiles attribute), 9
default() (TransportProperties method), 7
DIRECTION (SelectionProperties attribute), 8

E
EARLY_DATA (MessageProperties attribute), 11
ECN (MessageProperties attribute), 11
endpoint

module, 12
ESTABLISHED (ConnectionState attribute), 4
ESTABLISHING (ConnectionState attribute), 4
ExampleFramer (class in framer), 13

F
FINAL (MessageProperties attribute), 11
framer

module, 13
Framer (class in framer), 13

G
get_properties() (Connection method), 5

H
handle_received_data() (Framer method), 13
HANDLE_STATE_CLOSED (Connection attribute), 4
HANDLE_STATE_CONNECTION_ERROR (Connection attribute), 5
HANDLE_STATE_READY (Connection attribute), 5

I
IDEMPOTENT (MessageProperties attribute), 11
IGNORE (PreferenceLevel attribute), 8
ignore() (TransportProperties method), 7
initiate() (Preconnection method), 3
initiate_with_send() (Preconnection method), 3
INTERFACE (SelectionProperties attribute), 9

L
length (MessageDataObject attribute), 4
LIFETIME (MessageProperties attribute), 11
listen() (Preconnection method), 4
LOCAL_ADDRESS_PREFERENCE (SelectionProperties attribute), 9
LocalEndpoint (class in endpoint), 12
LOW_LATENCY_INTERACTIVE (CapacityProfiles attribute), 9
LOW_LATENCY_NON_INTERACTIVE (CapacityProfiles attribute), 10

M
MAXIMUM_MESSAGE_SIZE_BEFORE_FRAGMENTATION_OR_SEGMENTATION

(ConnectionProperties attribute), 10
MAXIMUM_MESSAGE_SIZE_CONCURRENT_WITH_CONNECTION_ESTABLISHMENT

(ConnectionProperties attribute), 10
MAXIMUM_MESSAGE_SIZE_ON_RECEIVE (ConnectionProperties

attribute), 10
MAXIMUM_MESSAGE_SIZE_ON_SEND (ConnectionProperties attribute),

10
MESSAGE_CAPACITY_PROFILE_OVERRIDE (MessageProperties

attribute), 11
message_properties

module, 11
MessageDataObject (class in connection), 4
MessageProperties (class in message_properties), 11
module

connection, 4
connection_properties, 9

21

NEATPy, Release 1.0.0

endpoint, 12
framer, 13
message_properties, 11
preconnection, 3
selection_properties, 8
transport_properties, 7

MULTIPATH (SelectionProperties attribute), 9
MULTISTREAMING (SelectionProperties attribute), 9

N
new_sent_message() (Framer method), 13

O
ORDERED (MessageProperties attribute), 11

P
PER_MSG_CHECKSUM_LEN_RECV (SelectionProperties attribute), 9
PER_MSG_CHECKSUM_LEN_SEND (SelectionProperties attribute), 9
PER_MSG_RELIABILITY (SelectionProperties attribute), 9
preconnection

module, 3
Preconnection (class in preconnection), 3
PREFER (PreferenceLevel attribute), 8
prefer() (TransportProperties method), 7
PreferenceLevel (class in selection_properties), 8
PRESERVE_MSG_BOUNDARIES (SelectionProperties attribute), 9
PRESERVE_ORDER (SelectionProperties attribute), 9
PRIORITY (ConnectionProperties attribute), 10
PRIORITY (MessageProperties attribute), 11
PROHIBIT (PreferenceLevel attribute), 8
prohibit() (TransportProperties method), 8
PVD (SelectionProperties attribute), 9

R
receive() (Connection method), 6
RECEIVING_FINAL_MESSAGE (MessageProperties attribute), 11
RELIABILITY (SelectionProperties attribute), 9
RELIABLE_DATA_TRANSFER (MessageProperties attribute), 11
RELIABLE_INORDER_STREAM (TransportPropertyProfiles attribute), 8
RELIABLE_MESSAGE (TransportPropertyProfiles attribute), 8
RemoteEndpoint (class in endpoint), 12
REQUIRE (PreferenceLevel attribute), 8
require() (TransportProperties method), 8
REQUIRED_MINIMUM_CORRUPTION_PROTECTION_COVERAGE_FOR_RECEIVING

(ConnectionProperties attribute), 10
RETRANSMISSION_THRESHOLD_BEFORE_EXCESSIVE_RETRANSMISSION_NOTIFICATION

(ConnectionProperties attribute), 10
RETRANSMIT_NOTIFY (SelectionProperties attribute), 9

S
SCAVENGER (CapacityProfiles attribute), 10
selection_properties

module, 8
SelectionProperties (class in selection_properties), 8
send() (Connection method), 6
set_property() (Connection method), 7
SINGULAR_TRANSMISSION (MessageProperties attribute), 11
SOFT_ERROR_NOTIFY (SelectionProperties attribute), 9
start() (Framer method), 13
start() (Preconnection method), 4

T
TCPUserTimeout (class in connection_properties), 10

TIMEOUT_FOR_ABORTING_CONNECTION (ConnectionProperties
attribute), 10

transport_properties
module, 7

TransportProperties (class in transport_properties), 7
TransportPropertyProfiles (class in transport_properties), 8

U
UNRELIABLE_DATAGRAM (TransportPropertyProfiles attribute), 8
USER_TIMEOUT_ENABLED (TCPUserTimeout attribute), 11
USER_TIMEOUT_TCP (ConnectionProperties attribute), 10

W
with_address() (LocalEndpoint method), 12
with_address() (RemoteEndpoint method), 12
with_hostname() (RemoteEndpoint method), 12
with_interface() (LocalEndpoint method), 12
with_interface() (RemoteEndpoint method), 12
with_port() (LocalEndpoint method), 12
with_port() (RemoteEndpoint method), 12

Z
ZERO_RTT_MSG (SelectionProperties attribute), 9

22 Index

	API
	Preconnection
	Connection
	Transport Properties
	Selection Properties
	Connection Properties
	Message Properties
	Endpoints
	Framer

	Client-server example
	Server
	Client

	Python Module Index
	Index

